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3 Questions

1. Even if recycling shouldn’t be canned, wouldn’t it be better to burn
recyclables for energy when recycling market prices get too low?

2. Is burning wood discards better than burying them?

3. Is aerobic composting worse than anaerobic digestion for food scraps?



Curbside Recycling



Recycling Market Price Fluctuations

Average Price for Curbside Recycled Materials
Pacific Northwest, 1985-2018
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Source: Sound Resource Management Group, Inc. database on Northwest recycling market prices. This graph and graphs for individual materials
available for download at: www.zerowaste.com .
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Energy Conservation from
Recycled-Content Manufacturing

Virgin- vs. Recycled-Content Product Energy Usage
(million Btu/ton of product)
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Sources: Morris, J., (1996). Recycling versus incineration: an energy conservation analysis. Journal of Hazardous Materials 47(1-3) 277-293; U.S. EPA
(2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM); WARM model and supporting
documentation available at: https://www.epa.gov/warm/versions-waste-reduction-model-warm#WARM Tool V14 .



https://www.epa.gov/warm/versions-waste-reduction-model-warm

Carbon Emissions Reduction from
Recycled-Content Manufacturing

Virgin- vs. Recycled-Content Product Carbon Emissions
(metric tons CO, equivalents/ton of product)
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Sources: Morris, J., (2005). Comparative LCAs for Curbside Recycling Versus Either Landfilling or Incineration with Energy Recovery. International
Journal of Life Cycle Assessment 10(4) 273-284; U.S. EPA (2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the
Waste Reduction Model (WARM); WARM model and supporting documentation available at: https://www.epa.gov/warm/versions-waste-reduction-
model-warm#WARM Tool V14 .
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Energy Conservation from Recycling
vs. Energy Generation from Disposal

Million Btus per Ton
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Sources: Morris, J., (1996). Recycling versus incineration: an energy conservation analysis. Journal of Hazardous Materials 47(1-3) 277-293; U.S. EPA
(2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM); WARM model and supporting
documentation available at: https://www.epa.gov/warm/versions-waste-reduction-model-warm#WARM Tool V14 ; Morris, J., 2010. Bury or burn North
American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. Environmental Science & Technology 44 (20): 7944-7949.
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Summary of the Curbside External Costs Issue

Curbside Recycling Cost -- $200 to 300/ton
Market Revenue -- $50 to 125/ton
Avoided Landfill Cost -- $50 to 150/ton
Avoided Environmental Cost:
High $1000+/ton
Low $ 200/ton

Trump Admin. $ < 100/ton

Problem: Environmental benefits of recycling do not
provide revenue for curbside recycling providers!



Clean Wood Discards



Carbon Footprints for Electricity Generation
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Sources: Kim, H. C.; Fthenakis, V.; Choi J-K.; Turney, D. E., 2012. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic
Electricity Generation — Systematic Review and Harmonization. Journal of Industrial Ecology 16 (S1): S110-S121; Morris, J., 2010. Bury
or burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. Environmental Science &
Technology 44 (20): 7944-7949; Morris, J., 2017. Recycle, Bury, or Burn Wood Waste Biomass? LCA answer depends on carbon
accounting, displaced fuels, emissions controls, and impact costs. Journal of Industrial Ecology, 21 (4) 844-856; and Whitaker, M. B.;
Heath, G. A.; Burkhardt, Ill, J. J.; Turchi, C. S., 2013. Life Cycle Assessment of a Power Tower Concentrating Solar Plant and the
Impacts of Key Design Alternatives. Environmental Science & Technology 47 ( ): 5896-5903.




Carbon Accounting Issues

1. Emissions of fossil and biogenic carbon dioxide (CO,) have identical
atmospheric climate impacts.

2. Additionality is necessary for offsets and credits.
3. Continued carbon storage in products or compost or landfills is not the
same as new sequestration of carbon in plants through photosynthesis of
CO, from the atmosphere.

4. Timing of CO, and especially of methane (CH,) releases is important.

5. Scale of releases over time is important.



Landfill (LF) Carbon Storage & Potential Life Cycle Carbon
Emissions from Waste-to-Energy (WTE)
& Landfill (LF) Disposal Facilities

Potential CO, & CH,
Kilograms Landfill Life Cycle Emissions LF Methane

_ Carbon (kg) Carbon | (kg COe per Metric Ton) [ (CH.) Capture

MSW Material Co(r:/::)ant Carbon per| Storage E)rrr" irseizzzvvesn

Metric Ton (%) WTE LF WTE (%) :
Film Plastic 66% 660 100% 2,420 0 0%
Newspaper 46 460 81 1,687 1,793 <10
C&D Wood 42 420 >80 1,540 1,637 <10
Leaves 34 340 77 1,247 1,604 20
TEx;rr?'ﬁ;: 55 550 72 2,017 3,159 35
Yard Debris 19 190 60 697 1,559 55
Cardboard 45 450 55 1,650 4,154 60
Grass 12 120 25 440 1,846 75
Food Scraps 15 150 15 550 2,615 80

Sources: De La Cruz, F. B., Barlaz, M. A., 2010. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data.
Environmental Science & Technology 44 (12): 4722-4728; Morris, J., 2010. Bury or burn North American MSW? LCAs provide answers for climate
impacts & carbon neutral power potential. Environmental Science & Technology 44 (20): 7944-7949; Wang, X., Padgett, J. M., De la Cruz, F. B., Barlaz,
M. B., 2011. Wood biodegradation in laboratory-scale landfills. Environmental Science & Technology 45: 6864-6871, and Morris, J., 2017. Recycle,
bury, or burn wood waste biomass? LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. Journal of
Industrial Ecology, 21 (4) 844-856.



Cubic Meters (m3) Methane (CH,) Generated Each Year
Since Waste Landfilled (m3® CH,/metric ton)
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Sources: U. S. Environmental Protection Agency, 2005. Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. EPA-
600/R-05/047, EPA: Washington, DC; De La Cruz, F. B., Barlaz, M. A., 2010. Estimation of waste component-specific landfill decay
rates using laboratory-scale decomposition data. Environmental Science & Technology 44 (12): 4722-4728; Morris, J., 2010. Bury or
burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. Environmental Science &
Technology 44 (20): 7944-7949; Wang, X., Padgett, J. M., De la Cruz, F. B., Barlaz, M. B., 2011. Wood biodegradation in laboratory-
scale landfills. Environmental Science & Technology 45: 6864-6871, and Morris, J., 2017. Recycle, bury, or burn wood waste biomass?
LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. Journal of Industrial Ecology, 21 (4)
844-856.



Cumulative Percentage of Life Cycle Methane

Generated Since Waste Landfilled
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Sources: U. S.
600/R-05/047,

Environmental Protection Agency, 2005. Landfill Gas Emissions Model (LandGEM) Version 3.02 User’s Guide. EPA-
EPA: Washington, DC; De La Cruz, F. B., Barlaz, M. A., 2010. Estimation of waste component-specific landfill decay

rates using laboratory-scale decomposition data. Environmental Science & Technology 44 (12): 4722-4728; Morris, J., 2010. Bury or
burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. Environmental Science &
Technology 44 (20): 7944-7949; Wang, X., Padgett, J. M., De la Cruz, F. B., Barlaz, M. B., 2011. Wood biodegradation in laboratory-
scale landfills. Environmental Science & Technology 45: 6864-6871, and Morris, J., 2017. Recycle, bury, or burn wood waste biomass?
LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. Journal of Industrial Ecology, 21 (4)

844-856.
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Life Cycle Environmental Impacts for
Clean Wood Waste — Virgin Forest Case
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Number of Std. Dev. Above/(Below) Mean

Life Cycle Environmental Impacts for
Clean Wood Waste — Managed Forest Case
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Source: Morris, J., 2017. Recycle, Bury, or Burn Wood Waste Biomass? LCA answer depends on carbon accounting, displaced fuels, emissions
controls, and impact costs. Journal of Industrial Ecology, 21 (4) 844-856, Figure 2.



Number of Std. Dev. Above/(Below) Mean

Life Cycle Environmental Impacts for
Clean Wood Waste — Managed Forest & Cheap Carbon
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Food Scraps



Rankings from Meta-Analysis/Harmonization & Qualitative
Assessment of Food Waste Management Methods

Treatment Climate | Energy Soil Fertilizer Water . Plant Yield
Carbon |Replacement|Conservation | Increase
Aerobic Composting 2 4 1 2 1 1
Anaerobic Digestion 1 2 2 1 2 1
In-Sink Grinding 3 1 3 3 3 3
Landfill 4 3 4 4 4 4

Source: Morris, J., Brown, S., Cotton, M., Matthews, H.S., 2017. Life-cycle assessment harmonization and soil science ranking results on food-waste
management methods. Environmental Science & Technology, 51 (10): 5360-5367, Table 5.
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