Environmental, Economic & Energy Trade-Offs in Managing Wastes for Sustainability & Resiliency

Dr. Jeffrey Morris

Sound Resource Management Group, Inc. Olympia, WA 98502

jeff.morris@zerowaste.com

Tel 360.867.1033

SEC - February 6, 2019

3 Questions

- 1. Even if recycling shouldn't be canned, wouldn't it be better to burn recyclables for energy when recycling market prices get too low?
 - 2. Is burning wood discards better than burying them?
- 3. Is aerobic composting worse than anaerobic digestion for food scraps?

Curbside Recycling

Recycling Market Price Fluctuations

Source: Sound Resource Management Group, Inc. database on Northwest recycling market prices. This graph and graphs for individual materials available for download at: www.zerowaste.com.

Energy Conservation from Recycled-Content Manufacturing

Sources: Morris, J., (1996). Recycling versus incineration: an energy conservation analysis. *Journal of Hazardous Materials* 47(1-3) 277-293; U.S. EPA (2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM); WARM model and supporting documentation available at: https://www.epa.gov/warm/versions-waste-reduction-model-warm#WARM Tool V14.

Carbon Emissions Reduction from Recycled-Content Manufacturing

Sources: Morris, J., (2005). Comparative LCAs for Curbside Recycling Versus Either Landfilling or Incineration with Energy Recovery. *International Journal of Life Cycle Assessment* 10(4) 273-284; U.S. EPA (2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM); WARM model and supporting documentation available at: https://www.epa.gov/warm/versions-waste-reduction-model-warm#WARM Tool V14.

Energy Conservation from Recycling vs. Energy Generation from Disposal

Sources: Morris, J., (1996). Recycling versus incineration: an energy conservation analysis. *Journal of Hazardous Materials* 47(1-3) 277-293; U.S. EPA (2016). Documentation for Greenhouse Gas Emission and Energy Factors Used in the Waste Reduction Model (WARM); WARM model and supporting documentation available at: https://www.epa.gov/warm/versions-waste-reduction-model-warm#WARM Tool V14; Morris, J., 2010. Bury or burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. *Environmental Science & Technology* 44 (20): 7944-7949.

Summary of the Curbside External Costs Issue

Curbside Recycling Cost -- \$200 to 300/ton

Market Revenue -- \$50 to 125/ton

Avoided Landfill Cost -- \$50 to 150/ton

Avoided Environmental Cost:

High \$1000+/ton

Low \$ 200/ton

Trump Admin. \$ < 100/ton

Problem: Environmental benefits of recycling do not provide revenue for curbside recycling providers!

Clean Wood Discards

Carbon Footprints for Electricity Generation

Sources: Kim, H. C.; Fthenakis, V.; Choi J-K.; Turney, D. E., 2012. Life Cycle Greenhouse Gas Emissions of Thin-film Photovoltaic Electricity Generation – Systematic Review and Harmonization. *Journal of Industrial Ecology* 16 (S1): S110-S121; Morris, J., 2010. Bury or burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. *Environmental Science & Technology* 44 (20): 7944-7949; Morris, J., 2017. Recycle, Bury, or Burn Wood Waste Biomass? LCA answer depends on carbon accounting, displaced fuels, emissions controls, and impact costs. *Journal of Industrial Ecology*, 21 (4) 844-856; and Whitaker, M. B.; Heath, G. A.; Burkhardt, III, J. J.; Turchi, C. S., 2013. Life Cycle Assessment of a Power Tower Concentrating Solar Plant and the Impacts of Key Design Alternatives. *Environmental Science & Technology* 47 (): 5896-5903.

Carbon Accounting Issues

- 1. Emissions of fossil and biogenic carbon dioxide (CO₂) have identical atmospheric climate impacts.
 - 2. Additionality is necessary for offsets and credits.
- 3. Continued carbon storage in products or compost or landfills is not the same as new sequestration of carbon in plants through photosynthesis of CO_2 from the atmosphere.
 - 4. Timing of CO₂ and especially of methane (CH₄) releases is important.
 - 5. Scale of releases over time is important.

Landfill (LF) Carbon Storage & Potential Life Cycle Carbon Emissions from Waste-to-Energy (WTE) & Landfill (LF) Disposal Facilities

MSW Material	Carbon Content (%)	Kilograms (kg) Carbon per Metric Ton	Landfill Carbon Storage (%)	Potential CO ₂ & CH ₄ Life Cycle Emissions (kg CO ₂ e per Metric Ton)		LF Methane (CH ₄) Capture for Breakeven	
				WTE	LF	Emissions vs. WTE (%)	
Film Plastic	66%	660	100%	2,420	0	0%	
Newspaper	46	460	81	1,687	1,793	<10	
C&D Wood	42	420	>80	1,540	1,637	<10	
Leaves	34	340	77	1,247	1,604	20	
Evergreen Trimmings	55	550	72	2,017	3,159	35	
Yard Debris	19	190	60	697	1,559	55	
Cardboard	45	450	55	1,650	4,154	60	
Grass	12	120	25	440	1,846	75	
Food Scraps	15	150	15	550	2,615	80	

Sources: De La Cruz, F. B., Barlaz, M. A., 2010. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. *Environmental Science & Technology* 44 (12): 4722-4728; Morris, J., 2010. Bury or burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. *Environmental Science & Technology* 44 (20): 7944-7949; Wang, X., Padgett, J. M., De la Cruz, F. B., Barlaz, M. B., 2011. Wood biodegradation in laboratory-scale landfills. *Environmental Science & Technology* 45: 6864-6871, and Morris, J., 2017. Recycle, bury, or burn wood waste biomass? LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. *Journal of Industrial Ecology*, 21 (4) 844-856.

Cubic Meters (m³) Methane (CH₄) Generated Each Year Since Waste Landfilled (m³ CH₄/metric ton)

Sources: U. S. Environmental Protection Agency, 2005. *Landfill Gas Emissions Model (LandGEM) Version 3.02 User's Guide.* EPA-600/R-05/047, EPA: Washington, DC; De La Cruz, F. B., Barlaz, M. A., 2010. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. *Environmental Science & Technology* 44 (12): 4722-4728; Morris, J., 2010. Bury or burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. *Environmental Science & Technology* 44 (20): 7944-7949; Wang, X., Padgett, J. M., De la Cruz, F. B., Barlaz, M. B., 2011. Wood biodegradation in laboratory-scale landfills. *Environmental Science & Technology* 45: 6864-6871, and Morris, J., 2017. Recycle, bury, or burn wood waste biomass? LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. *Journal of Industrial Ecology*, 21 (4) 844-856.

Cumulative Percentage of Life Cycle Methane Generated Since Waste Landfilled

Sources: U. S. Environmental Protection Agency, 2005. *Landfill Gas Emissions Model (LandGEM) Version 3.02 User's Guide.* EPA-600/R-05/047, EPA: Washington, DC; De La Cruz, F. B., Barlaz, M. A., 2010. Estimation of waste component-specific landfill decay rates using laboratory-scale decomposition data. *Environmental Science & Technology* 44 (12): 4722-4728; Morris, J., 2010. Bury or burn North American MSW? LCAs provide answers for climate impacts & carbon neutral power potential. *Environmental Science & Technology* 44 (20): 7944-7949; Wang, X., Padgett, J. M., De la Cruz, F. B., Barlaz, M. B., 2011. Wood biodegradation in laboratory-scale landfills. *Environmental Science & Technology* 45: 6864-6871, and Morris, J., 2017. Recycle, bury, or burn wood waste biomass? LCA answer depends on carbon accounting, emissions controls, displaced fuels, and impact costs. *Journal of Industrial Ecology*, 21 (4) 844-856.

Life Cycle Environmental Impacts for Clean Wood Waste – Virgin Forest Case

Life Cycle Environmental Impacts for Clean Wood Waste – Managed Forest Case

Source: Morris, J., 2017. Recycle, Bury, or Burn Wood Waste Biomass? LCA answer depends on carbon accounting, displaced fuels, emissions controls, and impact costs. *Journal of Industrial Ecology*, 21 (4) 844-856, Figure 2.

Life Cycle Environmental Impacts for Clean Wood Waste – Managed Forest & Cheap Carbon

Food Scraps

Rankings from Meta-Analysis/Harmonization & Qualitative Assessment of Food Waste Management Methods

Treatment	Climate	Energy	Soil Carbon	Fertilizer Replacement	Water Conservation	Plant Yield Increase
Aerobic Composting	2	4	1	2	1	1
Anaerobic Digestion	1	2	2	1	2	1
In-Sink Grinding	3	1	3	3	3	3
Landfill	4	3	4	4	4	4

Source: Morris, J., Brown, S., Cotton, M., Matthews, H.S., 2017. Life-cycle assessment harmonization and soil science ranking results on food-waste management methods. *Environmental Science & Technology*, 51 (10): 5360-5367, Table 5.

Additional References

Suggestions for Additional Reading

- Alvarez, R.A., et al, 2018. Assessment of methane emissions from the U.S. oil and gas supply chain. Science, 361: 186-188.
- De la Cruz, F.B., et al, 2016. Comparison of Field Measurements to Methane Emissions Models at a New Landfill. Environmental Science & Technology, 50 (17): 9432-9441.
- Farquharson, D., et al, 2016. Beyond Global Warming Potential: A Comparative Application of Climate Impact Metrics for the Life Cycle Assessment of Coal and Natural Gas Based Electricity. *Journal of Industrial Ecology*, 21 (4): 857-873.
- ICF International, 2016. Finding the Facts on Methane Emissions: A Guide to the Literature, prepared for The Natural Gas Council by ICF International, Fairfax, VA.
- National Academy of Sciences, 2018. Safely Transporting Hazardous Liquids and Gases in a Changing U.S. Energy Landscape, Transportation Research Board Special Report 325, Washington, DC: The National Academies Press.
- O'Sullivan, F., Paltsev, S., 2012. Shale Gas Production: Potential versus Actual GHG Emissions. MIT Joint Program on the Science and Policy of Global Change, Report No. 234, November 2012.
- Raimi, D., 2017. The Fracking debate: The Risks, Benefits, and Uncertainties of the Shale Revolution. Columbia University Press, New York, NY.
- Raimi, D., 2018. The Shale Revolution and Climate Change, Resources for the Future Issue Brief 18-01, RRF, Washington, DC.
- Venkatesh, A., et al, 2011. Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Natural Gas End-Uses and its Effects on Policy. Environmental Science & Technology, 45 (19): 8182-8189.

Thank you.

Dr. Jeffrey Morris

Sound Resource Management Group, Inc.

Olympia, WA 98502

jeff.morris@zerowaste.com